انتشار مقاله دانشجوی مهندسی نفت در نشریه Q1

خبرگزاری ایسنا دوشنبه 08 شهریور 1400 - 11:13
مقاله حسین صابری، دانشجوی کارشناسی مهندسی نفت دانشگاه حکیم سبزواری در مجله بین المللی Polymers با ضریب تاثیر ۴.۳۲۹ و رتبه بندی علمی Q۱ منتشر شد.
انتشار مقاله دانشجوی مهندسی نفت در نشریه Q1

به گزارش ایسنا، این مقاله با موضوع «کاربرد هوش مصنوعی برای پیش‌بینی نتایج ازدیاد برداشت در سیلاب‌زنی پلیمری» که مستخرج از پروژه کارشناسی آقای حسین صابری است، با راهنمایی دکتر احسان اسماعیل نژاد؛ عضو هیات علمی گروه مهندسی نفت دانشگاه حکیم سبزواری و در همکاری با پژوهشگر مهندسی نفت دانشگاه کره جنوبی نوشته شده است.

در این مقاله با عنوان: “Artificial Neural Network to Forecast Enhanced Oil Recovery Using Hydrolyzed Polyacrylamide in Sandstone and Carbonate Reservoirs” از سه الگوریتم هوش مصنوعی شامل سیستم شبکه عصبی پرسپترون چند لایه (MLP)، شبکه عصبی توابع پایه شعاعی (RBF) و استنتاج عصبی- فازی تطبیقی (ANFIS)برای پیش بینی نتایج ازدیاد برداشت نفت (EOR) استفاده شد که نتایج حاصل نشان داد از میان این سه الگوریتم، مدل MLP دارای بیش ترین دقت بود و توانایی پیش بینی داده در داخل و خارج از بازه ساخته شده خود را داشت.

بنابر اعلام روابط عمومی وزارت علوم، این موضوع می تواند باعث صرفه جویی قابل ملاحظه ای در هزینه ها و زمان انجام آزمایش های ازدیاد برداشت نفت شود.

انتهای پیام

منبع خبر "خبرگزاری ایسنا" است و موتور جستجوگر خبر تیترآنلاین در قبال محتوای آن هیچ مسئولیتی ندارد. (ادامه)
با استناد به ماده ۷۴ قانون تجارت الکترونیک مصوب ۱۳۸۲/۱۰/۱۷ مجلس شورای اسلامی و با عنایت به اینکه سایت تیترآنلاین مصداق بستر مبادلات الکترونیکی متنی، صوتی و تصویری است، مسئولیت نقض حقوق تصریح شده مولفان از قبیل تکثیر، اجرا و توزیع و یا هرگونه محتوای خلاف قوانین کشور ایران بر عهده منبع خبر و کاربران است.