پژوهشگران دانشکدگان علوم دانشگاه تهران نرمافزار ارتقاء یافته پیشگویی تمایل و استعداد تشکیل تجمعات پروتئینی- پپتیدی را برای پیشگیری از بیماریهایی مثل آلزایمر، پارکینسون و دیابت نوع ۲ طراحی کردند.
به گزارش خبرگزاری صدا و سیما ، پژوهشگران دانشکده زیستشناسی با همکاری دانشکده ریاضی، آمار و علوم کامپیوتر دانشکدگان علوم دانشگاه تهران موفق شدند نرمافزار پیشبینی تمایل شکلگیری تجمعات پپتیدی و پروتئینی با عنوان SqFt طراحی و ا بداع کنند . این دستاورد طی همکاری بینرشتهای فاطمه اشعاری پژوهشگر آزمایشگاه بیوتکنولوژی پروتئین با پژوهشگران رشتههای آمار و نیز مهندسی شیمی دانشگاه تهران به راهنمایی مشترک دکتر مهران حبیبی رضایی استاد دانشکده زیستشناسی و دکتر سودابه شمه سوار دانشیار دانشکده ریاضی آمار و علوم کامپیوتر دانشگاه تهران محقق شده است. دکتر حبیبی رضایی، سرپرست این گروه پژوهشی، در خصوص اهمیت این دستاورد گفت : در شرایط استرس اکسیداتیو، بسیاری از پروتئینها و پپتیدهای طبیعی با عملکردهای معلوم و بعضاً نامعلوم دارای درجات متفاوت تمایل به تشکیل تجمع آمیلوئیدی هستند. در نتیجه تشکیل تجمعات آمیلوئیدی، عملکرد طبیعی پروتئینها از بین رفته و بعضاً سمی میشوند. این شرایط به صورت وابسته به سن در بیماریهای وابسته به استرسهای اکسیداتیو مانند دیابت نوع ۲، آلزایمر و پارکینسون که امروزه شاهد روند فزونی آنها در جوامع از جمله کشورمان هستیم، مشاهده میشود. وی افزود: این تجمعات آمیلوئیدی در بیماری آلزایمر بصورت پلاکهای آمیلوئیدی خارج سلولی و کلافهای رشتههای درون سلولی و در بیماری پارکینسون به صورت رسوبات درون سلولی موسوم به اجسام «لووی» تشکیل میشود. تشکیل تجمع در پروتئینها تابع ویژگیهای شیمی فیزیکی و ساختار مولکولی پیچیده آنها است. از این رو، فراهم شدن امکان پیشبینی تجمع پروتئینها برای اتخاذ راهکارهای پیشگیرانه برای بیماریهای مرتبط با آمیلوئید و همچنین برای طراحی و فراوری و ارزیابی عملکردی داروهای زیستی در حوزه تخصصی مهندسی پروتئین حائز اهمیت است. دکتر حبیبی رضایی تاکید کرد: تاکنون ابزارها و سرورهای متنوعی جهت پیشبینی تجمع پروتئینها و پپیتدها معرفی شده است؛ با این حال یافتن مدل یا سرور با حساسیت و دقت بالاتر مبتنی بر درک اثر هر یک از ویژگیهای ذاتی و ساختاری پپتیدها و پروتئینها همچنان مورد توجه پژوهشگران قرار دارد. در راستای دستیابی به این دستاورد، ابتدا اثر مستقیم هر یک از ویژگیها در فرایند تجمعپذیری بررسی و مدل جدید جهت پیشبینی تجمع هگزاپپتتیدها با استفاده از روش یادگیری ماشین (Machine Learning) ارائه شد. استاد دانشکده زیستشناسی دانشگاه تهران افزود: به منظور طراحی و آزمایش مدل با رهنمودهای دکتر سودابه شمه سوار دانشیار آمار، از سرور WALTZ DB-۲.۰ که متشکل از ۱۴۱۶ هگزاپپتید آمیلوئیدی و غیرآمیلوئیدی بود، استفاده شد. ابتدا با استفاده از رگرسیون لجستیک (Logistic Regression) مدل طراحی و از ۳۵۴ هگزاپپتید جهت آزمون نرمافزار استفاده و به منظور بررسی کارآیی مدل از شاخصها و آنالیزهای آماری بهرهبرداری شد. در ادامه، کارآیی و پایایی مدل ابداع شده طی مقایسه کمیتهای محاسباتی مورد نظر با مقادیر بدست آمده از سرورهای رایج و شناختهشده مانند Aggrescan، WALTZ، Metamyl و PASTA۲.۰ به اثبات رسید. نتایج این پژوهش با عنوان“Prediction of protein aggregation propensity employing SqFt-based logistic regression model” اخیراً در مجله “International Journal of Biological Macromolecules” با ضریب تأثیر ۸.۲ منتشر شده است.
منبع خبر "صدا و سیما" است و موتور جستجوگر خبر تیترآنلاین در قبال محتوای آن هیچ مسئولیتی ندارد. (ادامه)
با استناد به ماده ۷۴ قانون تجارت الکترونیک مصوب ۱۳۸۲/۱۰/۱۷ مجلس شورای اسلامی و با عنایت به اینکه سایت تیترآنلاین مصداق بستر مبادلات الکترونیکی متنی، صوتی و تصویری است، مسئولیت نقض حقوق تصریح شده مولفان از قبیل تکثیر، اجرا و توزیع و یا هرگونه محتوای خلاف قوانین کشور ایران بر عهده منبع خبر و کاربران است.